A note on families of $b c$-systems of higher rank

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2001 J. Phys. A: Math. Gen. 34 L53
(http://iopscience.iop.org/0305-4470/34/7/101)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.101
The article was downloaded on 02/06/2010 at 09:49

Please note that terms and conditions apply.

LETTER TO THE EDITOR

A note on families of $\boldsymbol{b} \boldsymbol{c}$-systems of higher rank

Matthias Schork
FB Mathematik, J W Goethe-Universität, 60054 Frankfurt, Germany
E-mail: schork@math.uni-frankfurt.de

Received 5 December 2000

Abstract

We consider a special family of $b c$-systems of higher rank and discuss some properties of its associated anomaly.

PACS numbers: 1125, 0240

1. Introduction

The $b c$-system first appeared in bosonic string theory as a gauge fixing ghost system and plays a central role [1], in particular in the path-integral approach to scattering amplitudes (see [2,3] and the extensive list of references therein). In this approach the final expressions are finitedimensional integrals of Quillen norms of sections of certain determinant line bundles over the moduli spaces $\mathcal{M}_{g, n}$ (or the compactifications $\overline{\mathcal{M}}_{g, n}$) of n-punctured Riemann surfaces. As there are two contributions to the integrand (one from the string embedding $X^{\mu}, \mu=1, \ldots, d$ and the other from the ghosts b, c, \bar{b}, \bar{c}, one may use the famous Mumford formula [4] to trivialise the bundle for special choices of parameters, thus fixing the dimension of space-time to $d=26$ [5]. Recently, a close cousin of the (chiral) $b c$-system based on vector bundles of higher rank was introduced and some of its properties were studied [6, 7]. Since families of the usual system play such a decisive role in string theory, one should thus consider families of these generalized $b c$-systems too. This is what we start here.

In the following we denote by Σ a Riemann surface of genus $g \geqslant 2$ and by K its canonical bundle, i.e., the holomorphic cotangent bundle. We use the same symbol to denote a holomorphic vector bundle and its associated (locally free) sheaf of germs of sections. We also switch freely between the algebraic and analytic category.

2. The relative $b c$-system and some geometry

Before we begin we briefly recall some geometrical background; for this see, e.g., $[3,8]$. Assume $\pi: X \rightarrow S$ to be a continous map between varieties and let E be a sheaf on X (e.g., the locally free sheaf of sections of some vector bundle). Then the higher direct image sheaves $R^{i} \pi_{*}(E)$ on S are the sheaves associated to the presheaves $U \mapsto H^{i}\left(\pi^{-1}(U), E_{\mid \pi^{-1}(U)}\right)$; loosely speaking, we interprete them as cohomology along the fibre, i.e., $R^{i} \pi_{*}(E)_{s} \simeq$ $H^{i}\left(X_{s}, E_{s}\right)$, where $X_{s}:=\pi^{-1}(s)$ and $E_{s}:=E_{\mid \pi^{-1}(s)}$. The set of coherent sheaves on X
is a semigroup under direct sum and we turn it into a group by factoring out the relation $\mathcal{E}-\mathcal{E}_{1}-\mathcal{E}_{2}$ for every exact sequence $0 \rightarrow \mathcal{E}_{1} \rightarrow \mathcal{E} \rightarrow \mathcal{E}_{2} \rightarrow 0$, thus obtaining a free abelian group, the Grothendieck group $K(X)$. Its elements are denoted by $[\mathcal{E}]$ or as formal differences $\mathcal{F}-\mathcal{G}$. Now, let E be a coherent sheaf on X and let π be 'sufficiently nice' (e.g., proper and flat); then the direct images $R^{i} \pi_{*}(E)$ on S are coherent too and we can define a map $\pi_{!}: K(X) \rightarrow K(S)$, given by

$$
\begin{equation*}
\pi_{!}([E]):=\sum_{i \geqslant 0}(-1)^{i}\left[R^{i} \pi_{*}(E)\right] . \tag{1}
\end{equation*}
$$

We now restrict to the case of a family $\pi: \mathcal{C} \rightarrow S$ of projective curves (Riemann surfaces), i.e., the fibers $\Sigma_{s}:=\mathcal{C}_{s}$ have dimension one; here we imagine that $S \subset \mathcal{M}_{g}$. In this case (1) reduces to $\pi_{!}(E)=R^{0} \pi_{*}(E)-R^{1} \pi_{*}(E)$ since the higher cohomologies vanish. Using that a determinant can be defined for coherent sheaves [9], we may use its multiplicative property to define for elements of $K(S): \operatorname{det}(\mathcal{E}-\mathcal{F}):=\operatorname{det}(\mathcal{E}) \otimes \operatorname{det}(\mathcal{F})^{-1}$. We thus obtain $\operatorname{det} \pi_{!}(E)=\operatorname{det}\left(R^{0} \pi_{*}(E)\right) \otimes \operatorname{det}\left(R^{1} \pi_{*}(E)\right)^{-1}$. Let us denote by $\omega:=\omega_{\mathcal{C} / S}$ the relative dualizing sheaf (which equals the sheaf of relative one-forms $\Omega_{\mathcal{C} / S}^{1}$ in smooth points) and by $\omega^{\lambda}=\omega^{\otimes \lambda}$ its powers for $\lambda \in \mathbb{Z}$. Define $\mathcal{L}_{\lambda}:=\operatorname{det} \pi_{!}\left(\omega^{\lambda}\right)$; its stalks are given by
$\left(\mathcal{L}_{\lambda}\right)_{s} \simeq \operatorname{det} H^{0}\left(\Sigma_{s}, \omega_{\Sigma_{s}}^{\lambda}\right) \otimes\left(\operatorname{det} H^{1}\left(\Sigma_{s}, \omega_{\Sigma_{s}}^{\lambda}\right)\right)^{-1} \simeq \operatorname{det}\left(\operatorname{ker} \bar{\partial}_{\lambda ; s}\right) \otimes\left(\operatorname{det}\left(\operatorname{coker} \bar{\partial}_{\lambda ; s}\right)\right)^{-1}$
where $\bar{\partial}_{\lambda ; s}: K_{\Sigma_{s}}^{\lambda} \rightarrow K_{\Sigma_{s}}^{\lambda} \otimes \bar{K}_{\Sigma_{s}}$ is the Dolbeault operator appearing in the action of the (chiral) $b c$-system of conformal weight $(1-\lambda, \lambda)$ on Σ_{s}; the case $\lambda=-1$ is the one appearing in bosonic string theory [1]. Defining naively for each s the virtual vector space $\operatorname{ker} \bar{\partial}_{\lambda ; s}-\operatorname{coker} \bar{\partial}_{\lambda ; s}=$: ind $\bar{\partial}_{\lambda ; s}$, we see that $\left(\mathcal{L}_{\lambda}\right)_{s} \simeq \operatorname{det}$ ind $\bar{\partial}_{\lambda ; s}$, thus showing the connection to the anomaly of the family $\left\{\bar{\partial}_{\lambda ; s}\right\}_{s \in S}[10,11]$. Defining the (local) anomaly by $\mathcal{A}_{\lambda}:=c_{1}\left(\mathcal{L}_{\lambda}\right)$, we may use Grothendieck-Riemann-Roch $\operatorname{Ch}\left(\pi_{!}(E)\right)=\pi_{*}\left(\operatorname{Ch}(E) \operatorname{Td} T_{\mathcal{C} / S}\right.$) (where π_{*} is 'integration along the fibre' and $T_{\mathcal{C} / S}=\omega_{\mathcal{C} / S}^{-1}$ is the relative tangent sheaf) to prove the Mumford formula $\mathcal{L}_{\lambda} \simeq \mathcal{L}_{1}^{6 \lambda^{2}-6 \lambda+1}$ [4], which we interpret as an anomaly relation:

$$
\begin{equation*}
\mathcal{A}_{\lambda}=\left(6 \lambda^{2}-6 \lambda+1\right) \cdot \mathcal{A}_{1} . \tag{2}
\end{equation*}
$$

The anomaly coming from the chiral and antichiral ghost system in the bosonic string is given by $-2 \mathcal{A}_{-1}=-26 \mathcal{A}_{1}$, thus forcing $d=26$ [5]. Note the symmetry of (2) around $\frac{1}{2}$ coming from Serre duality:

$$
\begin{equation*}
\mathcal{A}_{1-\lambda}=\mathcal{A}_{\lambda} . \tag{3}
\end{equation*}
$$

3. The relative $b c$-system of higher rank

A generalized $b c$-system based on a Hermitian vector bundle E of rank r over a Riemann surface was introduced in [7] (see also [6]). Using the Hodge inner product, the action of this $b c_{r}$-system is given by $S[b, c]=\frac{i}{\pi} \int_{\Sigma} b \wedge \bar{\partial}_{E} c$, where c (resp. b) is a section of E (resp. $K \otimes E^{\vee}$). Following the approach of Raina [12,13] for the usual rank-one case, it was shown that the simplest possible case results if we choose E to be stable of degree $d=r(g-1)$ with $h^{0}(\Sigma, E)=0$, i.e., E lies outside the nonabelian theta divisor (this corresponds roughly to choosing an even theta-characteristic α with $\alpha^{2} \simeq K$ in the rank-one case). In the case where zero-modes are allowed, one uses appropriate insertions to relate these systems to the one considered before where no zero-modes exist. It turns out that-realizing this idea-a satisfactory treatment (existence and uniqueness of correlation functions) exists for rank r only in degree $d=r s$ with $s=1, \ldots, g-2$; here we have assumed without loss of generality $0 \leqslant d<r(g-1)$. Nevertheless, let us consider as above a family of Riemann surfaces (projective curves) $\pi: \mathcal{C} \rightarrow S$ endowed with a family $\mathcal{E} \rightarrow \mathcal{C}$ of (stable) vector bundles of
rank r and degree d (that is, each restriction $\mathcal{E}_{s}:=\mathcal{E}_{\mid \Sigma_{s}}$ is of this type). The zero-modes of the field c (resp. b) on Σ_{s} are given by $H^{0}\left(\Sigma_{s}, \mathcal{E}_{s}\right)\left(\right.$ resp. $\left.H^{0}\left(\Sigma_{s}, K_{\Sigma_{s}} \otimes \mathcal{E}_{s}^{\vee}\right) \simeq H^{1}\left(\Sigma_{s}, \mathcal{E}_{s}\right)^{*}\right)$ and we obtain in complete analogy to above

$$
\operatorname{det}\left(\operatorname{ind} \bar{\partial}_{\mathcal{E}_{s}}\right) \simeq \operatorname{det} H^{0}\left(\Sigma_{s}, \mathcal{E}_{s}\right) \otimes\left(\operatorname{det} H^{1}\left(\Sigma_{s}, \mathcal{E}_{s}\right)\right)^{-1}=\left(\operatorname{det} \pi_{!}(\mathcal{E})\right)_{s}
$$

so that we want to consider $\operatorname{det} \pi_{!}(\mathcal{E})\left(\equiv \lambda_{\mathcal{E}} \text { in the notation of [14] and (DET } \bar{\partial}_{\mathcal{E}}\right)^{-1}$ in [15]) on S. The anomaly is in this case defined as $\mathcal{A}_{\mathcal{E}}:=c_{1}\left(\operatorname{det} \pi_{!}(\mathcal{E})\right)$ and we want to determine it with the help of Grothendieck-Riemann-Roch. Therefore, we have to calculate the degree-four part of $\operatorname{Ch}(\mathcal{E}) \operatorname{Td}\left(T_{\mathcal{C} / S}\right)$, which is in general given by

$$
\begin{equation*}
\frac{r}{12} c_{1}^{2}(\omega)-\frac{1}{2} c_{1}(\mathcal{E}) c_{1}(\omega)+\frac{1}{2} c_{1}^{2}(\mathcal{E})-c_{2}(\mathcal{E}) \tag{4}
\end{equation*}
$$

Now, applying π_{*} and using the definition of the Hodge class $\mathcal{A}_{1}=\frac{1}{12} \pi_{*}\left(c_{1}^{2}(\omega)\right)$ we obtain:
Proposition 1. Let $\pi: \mathcal{C} \rightarrow S$ be a family of projective curves (Riemann surfaces) and $\omega_{\mathcal{C} / S}=\omega$ the relative dualizing sheaf. If $\mathcal{E} \rightarrow \mathcal{C}$ is a family of (stable) vector bundles of rank r then the anomaly of the family of associated $b c_{r}$-systems is given by

$$
\begin{equation*}
\mathcal{A}_{\mathcal{E}}=r \cdot \mathcal{A}_{1}-\frac{1}{2} \pi_{*}\left(c_{1}(\omega) c_{1}(\mathcal{E})\right)+\frac{1}{2} \pi_{*}\left(c_{1}^{2}(\mathcal{E})\right)-\pi_{*}\left(c_{2}(\mathcal{E})\right) \tag{5}
\end{equation*}
$$

Since this seems to be all one can say in the general case, we now specialize to a situation where we have more contact to the usual $b c$-system. We thus assume that $\mathcal{E}=\mathcal{F} \otimes \omega^{\lambda}$ with $\lambda \in \mathbb{Z}$, i.e., we have a family of ' \mathcal{F}-valued fields of spin λ '. Here we assume that \mathcal{F} is of a somehow simpler type than the general \mathcal{E}. Note that $\operatorname{rank}(\mathcal{E})=\operatorname{rank}(\mathcal{F})=r$ and $\operatorname{deg}(\mathcal{E})=\operatorname{deg}(\mathcal{F})+2 \lambda r(g-1)$. The anomaly is given as

$$
\mathcal{A}_{\mathcal{F}, \lambda}:=\mathcal{A}_{\mathcal{F} \otimes \omega^{\lambda}}=c_{1}\left(\operatorname{det} \pi_{!}\left(\mathcal{F} \otimes \omega^{\lambda}\right)\right)
$$

Since the expansion of the Chern class gives $c_{1}\left(\mathcal{F} \otimes \omega^{\lambda}\right)=r \lambda c_{1}(\omega)+c_{1}(\mathcal{F})$, we obtain from (4) the degree-four part

$$
\frac{r}{12}\left(6 r \lambda^{2}-6 \lambda+1\right) c_{1}^{2}(\omega)+\frac{1}{2} c_{1}^{2}(\mathcal{F})+\left(r \lambda-\frac{1}{2}\right) c_{1}(\omega) c_{1}(\mathcal{F})-c_{2}\left(\mathcal{F} \otimes \omega^{\lambda}\right)
$$

Using

$$
c_{2}\left(\mathcal{F} \otimes \omega^{\lambda}\right)=\frac{r(r-1) \lambda^{2}}{2} c_{1}^{2}(\omega)+\lambda(r-1) c_{1}(\omega) c_{1}(\mathcal{F})+c_{2}(\mathcal{F})
$$

this equals

$$
\frac{r}{12}\left(6 \lambda^{2}-6 \lambda+1\right) c_{1}^{2}(\omega)+\frac{1}{2} c_{1}^{2}(\mathcal{F})+\frac{2 \lambda-1}{2} c_{1}(\omega) c_{1}(\mathcal{F})-c_{2}(\mathcal{F})
$$

Again, applying π_{*} and using the definition of the Hodge class we obtain:
Proposition 2. Assume that $\mathcal{E}=\mathcal{F} \otimes \omega^{\lambda}$. The associated anomaly is given by

$$
\begin{equation*}
\mathcal{A}_{\mathcal{F}, \lambda}=r \cdot \mathcal{A}_{\lambda}+\frac{1}{2} \pi_{*}\left(c_{1}^{2}(\mathcal{F})\right)+\frac{2 \lambda-1}{2} \pi_{*}\left(c_{1}(\omega) c_{1}(\mathcal{F})\right)-\pi_{*}\left(c_{2}(\mathcal{F})\right) . \tag{6}
\end{equation*}
$$

Note that (6) reduces to the usual Mumford formula (2) in case that \mathcal{F} is the trivial bundle of rank one. Choosing for \mathcal{F} the trivial bundle of rank r (which is not stable), we obtain $\mathcal{A}_{\mathcal{F}, \lambda}=r \cdot \mathcal{A}_{\lambda}$; this choice corresponds to the incorrect impression [7] (suggested by a local analysis) that the $b c_{r}$-system is just a sum of r usual $b c$-systems. In the case that we do not assume \mathcal{F} to be of simpler type than the general \mathcal{E} we may set $\lambda=0$ in (6) and use (3) to recover (5). If we consider families of spin curves [16], i.e., curves with a spin structure (essentially a square root of the canonical bundle), we have to take a finite covering of the moduli space \mathcal{M}_{g} and are allowed
to consider $\lambda \in \frac{1}{2} \mathbb{Z}$. Inserting $\lambda=\frac{1}{2}$ in (6) yields $\mathcal{A}_{\mathcal{F}, \frac{1}{2}}=r \cdot \mathcal{A}_{\frac{1}{2}}+\frac{1}{2} \pi_{*}\left(c_{1}^{2}(\mathcal{F})\right)-\pi_{*}\left(c_{2}(\mathcal{F})\right)$. From (3) we inherit the following symmetry around $\frac{1}{2}$:

$$
\mathcal{A}_{\mathcal{F}, 1-\lambda}=\mathcal{A}_{\mathcal{F}, \lambda}+(1-2 \lambda) \cdot \pi_{*}\left(c_{1}(\omega) c_{1}(\mathcal{F})\right) .
$$

Making this more explicit, we first obtain for $\kappa \in \frac{1}{2} \mathbb{Z}$ that

$$
\mathcal{A}_{\mathcal{F}, \lambda+\kappa}=\mathcal{A}_{\mathcal{F}, \lambda}+\kappa \cdot \pi_{*}\left(c_{1}(\omega) c_{1}(\mathcal{F})\right)+6 r \kappa(\kappa+2 \lambda-1) \cdot \mathcal{A}_{1}
$$

which reduces in the case $\lambda=\frac{1}{2}$ to

$$
\mathcal{A}_{\mathcal{F}, \frac{1}{2}+\kappa}=\mathcal{A}_{\mathcal{F}, \frac{1}{2}}+\kappa \cdot \pi_{*}\left(c_{1}(\omega) c_{1}(\mathcal{F})\right)+6 r \kappa^{2} \cdot \mathcal{A}_{1}
$$

This shows explicitly that the term in the middle of the right-hand side destroys the symmetry $\kappa \leftrightarrow-\kappa$, since $\mathcal{A}_{\mathcal{F}, \frac{1}{2}+\kappa}-\mathcal{A}_{\mathcal{F}, \frac{1}{2}-\kappa}=2 \kappa \cdot \pi_{*}\left(c_{1}(\omega) c_{1}(\mathcal{F})\right)$. Note that we do restore this symmetry in the case that $c_{1}(\mathcal{F})^{2}=0$. Recall that the symmetry (3) comes from the fact that the $b c$-system is symmetric under interchange of the field contents, i.e., there is no difference in considering b (resp. c) as a section of K^{λ} (resp. $K^{1-\lambda}$) or $K^{1-\lambda}$ (resp. K^{λ}). In the $b c_{r}$-system we have a symmetry under interchange of E and $K \otimes E^{\vee}$, see [7]. Since this symmetry should also hold in the relative case, we expect that $\mathcal{A}_{\omega \otimes \mathcal{E}}{ }^{\vee}=\mathcal{A}_{\mathcal{E}}$. Let us check this explicitly for $\mathcal{E}=\mathcal{F} \otimes \omega^{\lambda}$, so $\omega \otimes \mathcal{E}^{\vee}=\mathcal{F}^{\vee} \otimes \omega^{1-\lambda}$. Using the relation $c_{i}\left(\mathcal{F}^{\vee}\right)=(-1)^{i} c_{i}(\mathcal{F})$ [9], we find with (3) and (6)

$$
\begin{aligned}
\mathcal{A}_{\mathcal{F} \vee}, 1-\lambda & =r \cdot \mathcal{A}_{1-\lambda}+\frac{1}{2} \pi_{*}\left(c_{1}^{2}\left(\mathcal{F}^{\vee}\right)\right)+\frac{2(1-\lambda)-1}{2} \pi_{*}\left(c_{1}(\omega) c_{1}\left(\mathcal{F}^{\vee}\right)\right)-\pi_{*}\left(c_{2}\left(\mathcal{F}^{\vee}\right)\right) \\
& =\mathcal{A}_{\mathcal{F}, \lambda}
\end{aligned}
$$

as we expected. Using the above formulae it is easy to check that in the general case the expected formula holds, i.e.,

$$
\mathcal{A}_{\omega \otimes \mathcal{E}^{\vee}}=\mathcal{A}_{\mathcal{E}} .
$$

This is again a consequence of Serre duality and reduces to (3) if one chooses $\mathcal{E}=\omega^{\lambda}$.
Since the characteristic class $c_{2}(\mathcal{E})$ appears in formula (5) for the anomaly, it is not possible (in contrast to the usual rank-one case appearing in string theory-recall the introduction) to consider the relative $b c_{r}$-system together with a simple bosonic system (like the X^{μ}) and arrange for a cancellation of anomalies. In particular, one is tempted to introduce an additional system based on \mathcal{E}^{\vee} to get rid of this term (some kind of 'ghosts of ghosts'), but the symmetry $c_{2}\left(\mathcal{E}^{\vee}\right)=c_{2}(\mathcal{E})$ destroys these hopes. Consequently, it will be much more difficult to construct a complete system free of anomalies, but see, e.g., [6].

References

[1] Green M, Schwarz J and Witten E 1987 Superstring Theory I, II (Cambridge: Cambridge University Press)
[2] D'Hoker E and Phong D H 1988 The geometry of string perturbation theory Rev. Mod. Phys. 60 917-1065
[3] Albeverio S, Jost J, Pachya S and Scarlatti S 1997 A Mathematical Introduction to String Theory (Cambridge: Cambridge University Press)
[4] Mumford D 1977 Stability of projective varieties L'Enseignement Mathématique 23 39-110
[5] Manin Yu I 1986 Critical dimension of the string theories and the dualizing sheaf on the moduli space of (super) curves Funct. Anal. Appl. 20 244-6
[6] Losev A, Moore G, Nekrasov N and Shatashvili S 1997 Chiral Lagrangians, anomalies, supersymmetry, and holomorphy Nucl. Phys. B 484196-222
[7] Schork M 2000 Generalized $b c$-systems based on Hermitian vector bundles J. Math. Phys. 41 2443-59
[8] Hartshorne R 1977 Algebraic Geometry (Berlin: Springer)
[9] Kobayashi S 1987 Differential Geometry of Complex Vector Bundles (Princeton, NJ: Princeton University Press)
[10] Nash C 1991 Differential Topology and Quantum Field Theory (New York: Academic Press)
[11] Bertlmann R A 1996 Anomalies in Quantum Field Theory (Oxford: Oxford University Press)
[12] Raina A 1989 Fay's trisecant identity and conformal field theory Commun. Math. Phys. 122 625-41
[13] Raina A 1990 Analyticity and chiral fermions on a Riemann surface Helv. Phys. Acta 63 694-704
[14] Beilinson A A and Schechtman V 1988 Determinant bundles and Virasoro algebras Commun. Math. Phys. 118 651-701
[15] Alvarez-Gaumé L, Bost J B, Moore G, Nelson Ph and Vafa C 1987 Bosonization on higher genus Riemann surfaces Commun. Math. Phys. 112 503-52
[16] Cornalba M 1989 Moduli of curves and theta-characteristics Lectures on Riemann Surfaces (Singapore: World Scientific)

