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Abstract
We consider a special family of bc-systems of higher rank and discuss some
properties of its associated anomaly.

PACS numbers: 1125, 0240

1. Introduction

The bc-system first appeared in bosonic string theory as a gauge fixing ghost system and plays
a central role [1], in particular in the path-integral approach to scattering amplitudes (see [2,3]
and the extensive list of references therein). In this approach the final expressions are finite-
dimensional integrals of Quillen norms of sections of certain determinant line bundles over the
moduli spaces Mg,n (or the compactifications Mg,n) of n-punctured Riemann surfaces. As
there are two contributions to the integrand (one from the string embedding Xµ, µ = 1, . . . , d
and the other from the ghosts b, c, b̄, c̄), one may use the famous Mumford formula [4] to
trivialise the bundle for special choices of parameters, thus fixing the dimension of space–time
to d = 26 [5]. Recently, a close cousin of the (chiral) bc-system based on vector bundles of
higher rank was introduced and some of its properties were studied [6, 7]. Since families of
the usual system play such a decisive role in string theory, one should thus consider families
of these generalized bc-systems too. This is what we start here.

In the following we denote by 
 a Riemann surface of genus g � 2 and by K its
canonical bundle, i.e., the holomorphic cotangent bundle. We use the same symbol to denote
a holomorphic vector bundle and its associated (locally free) sheaf of germs of sections. We
also switch freely between the algebraic and analytic category.

2. The relative bc-system and some geometry

Before we begin we briefly recall some geometrical background; for this see, e.g., [3, 8].
Assume π : X → S to be a continous map between varieties and let E be a sheaf on X (e.g.,
the locally free sheaf of sections of some vector bundle). Then the higher direct image sheaves
Riπ∗(E) on S are the sheaves associated to the presheaves U �→ Hi(π−1(U),E|π−1(U));
loosely speaking, we interprete them as cohomology along the fibre, i.e., Riπ∗(E)s �
Hi(Xs, Es), where Xs := π−1(s) and Es := E|π−1(s). The set of coherent sheaves on X
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is a semigroup under direct sum and we turn it into a group by factoring out the relation
E − E1 − E2 for every exact sequence 0 → E1 → E → E2 → 0, thus obtaining a free abelian
group, the Grothendieck group K(X). Its elements are denoted by [E] or as formal differences
F − G. Now, let E be a coherent sheaf on X and let π be ‘sufficiently nice’ (e.g., proper
and flat); then the direct images Riπ∗(E) on S are coherent too and we can define a map
π! : K(X) → K(S), given by

π!([E]) :=
∑

i�0

(−1)i[Riπ∗(E)]. (1)

We now restrict to the case of a family π : C → S of projective curves (Riemann surfaces),
i.e., the fibers 
s := Cs have dimension one; here we imagine that S ⊂ Mg . In this case
(1) reduces to π!(E) = R0π∗(E) − R1π∗(E) since the higher cohomologies vanish. Using
that a determinant can be defined for coherent sheaves [9], we may use its multiplicative
property to define for elements of K(S): det(E − F) := det(E) ⊗ det(F)−1. We thus obtain
det π!(E) = det(R0π∗(E)) ⊗ det(R1π∗(E))−1. Let us denote by ω := ωC/S the relative
dualizing sheaf (which equals the sheaf of relative one-forms �1

C/S in smooth points) and by
ωλ = ω⊗λ its powers for λ ∈ Z. Define Lλ := det π!(ω

λ); its stalks are given by

(Lλ)s � det H 0(
s, ω
λ

s
) ⊗ (det H 1(
s, ω

λ

s
))−1 � det(ker ∂̄λ;s) ⊗ (det(coker ∂̄λ;s))−1

where ∂̄λ;s : Kλ

s

→ Kλ

s

⊗ K
s
is the Dolbeault operator appearing in the action of the

(chiral) bc-system of conformal weight (1 − λ, λ) on 
s ; the case λ = −1 is the one
appearing in bosonic string theory [1]. Defining naively for each s the virtual vector space
ker ∂̄λ;s − coker ∂̄λ;s =: ind ∂̄λ;s , we see that (Lλ)s � det ind ∂̄λ;s , thus showing the connection
to the anomaly of the family {∂̄λ;s}s∈S [10,11]. Defining the (local) anomaly by Aλ := c1(Lλ),
we may use Grothendieck–Riemann–Roch Ch(π!(E)) = π∗(Ch(E)TdTC/S) (where π∗ is
‘integration along the fibre’ and TC/S = ω−1

C/S is the relative tangent sheaf) to prove the Mumford

formula Lλ � L6λ2−6λ+1
1 [4], which we interpret as an anomaly relation:

Aλ = (6λ2 − 6λ + 1) · A1. (2)

The anomaly coming from the chiral and antichiral ghost system in the bosonic string is given
by −2A−1 = −26A1, thus forcing d = 26 [5]. Note the symmetry of (2) around 1

2 coming
from Serre duality:

A1−λ = Aλ. (3)

3. The relative bc-system of higher rank

A generalized bc-system based on a Hermitian vector bundle E of rank r over a Riemann
surface was introduced in [7] (see also [6]). Using the Hodge inner product, the action of this
bcr -system is given by S[b, c] = i

π

∫


b ∧ ∂̄Ec, where c (resp. b) is a section of E (resp.

K ⊗E∨). Following the approach of Raina [12,13] for the usual rank-one case, it was shown
that the simplest possible case results if we choose E to be stable of degree d = r(g − 1)
with h0(
,E) = 0, i.e., E lies outside the nonabelian theta divisor (this corresponds roughly
to choosing an even theta-characteristic α with α2 � K in the rank-one case). In the case
where zero-modes are allowed, one uses appropriate insertions to relate these systems to the
one considered before where no zero-modes exist. It turns out that—realizing this idea—a
satisfactory treatment (existence and uniqueness of correlation functions) exists for rank r only
in degree d = rs with s = 1, . . . , g − 2; here we have assumed without loss of generality
0 � d < r(g − 1). Nevertheless, let us consider as above a family of Riemann surfaces
(projective curves) π : C → S endowed with a family E → C of (stable) vector bundles of
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rank r and degree d (that is, each restriction Es := E|
s
is of this type). The zero-modes of the

field c (resp. b) on 
s are given by H 0(
s, Es) (resp. H 0(
s,K
s
⊗ E∨

s ) � H 1(
s, Es)∗) and
we obtain in complete analogy to above

det(ind ∂̄Es ) � det H 0(
s, Es) ⊗ (det H 1(
s, Es))−1 = (det π!(E))s
so that we want to consider det π!(E) (≡ λE in the notation of [14] and (DET ∂̄E)−1 in [15]) on
S. The anomaly is in this case defined as AE := c1(det π!(E)) and we want to determine it with
the help of Grothendieck–Riemann–Roch. Therefore, we have to calculate the degree-four part
of Ch(E)Td(TC/S), which is in general given by

r

12
c2

1(ω) − 1

2
c1(E)c1(ω) +

1

2
c2

1(E) − c2(E). (4)

Now, applying π∗ and using the definition of the Hodge class A1 = 1
12π∗(c2

1(ω)) we obtain:

Proposition 1. Let π : C → S be a family of projective curves (Riemann surfaces) and
ωC/S = ω the relative dualizing sheaf. If E → C is a family of (stable) vector bundles of rank
r then the anomaly of the family of associated bcr -systems is given by

AE = r · A1 − 1

2
π∗(c1(ω)c1(E)) +

1

2
π∗(c2

1(E)) − π∗(c2(E)). (5)

Since this seems to be all one can say in the general case, we now specialize to a situation
where we have more contact to the usual bc-system. We thus assume that E = F ⊗ ωλ

with λ ∈ Z, i.e., we have a family of ‘F-valued fields of spin λ’. Here we assume that F
is of a somehow simpler type than the general E . Note that rank(E) = rank(F) = r and
deg(E) = deg(F) + 2λr(g − 1). The anomaly is given as

AF,λ := AF⊗ωλ = c1(det π!(F ⊗ ωλ)).

Since the expansion of the Chern class gives c1(F ⊗ ωλ) = rλc1(ω) + c1(F), we obtain from
(4) the degree-four part

r

12
(6rλ2 − 6λ + 1)c2

1(ω) +
1

2
c2

1(F) + (rλ − 1

2
)c1(ω)c1(F) − c2(F ⊗ ωλ).

Using

c2(F ⊗ ωλ) = r(r − 1)λ2

2
c2

1(ω) + λ(r − 1)c1(ω)c1(F) + c2(F)

this equals

r

12
(6λ2 − 6λ + 1)c2

1(ω) +
1

2
c2

1(F) +
2λ − 1

2
c1(ω)c1(F) − c2(F).

Again, applying π∗ and using the definition of the Hodge class we obtain:

Proposition 2. Assume that E = F ⊗ ωλ. The associated anomaly is given by

AF,λ = r · Aλ +
1

2
π∗(c2

1(F)) +
2λ − 1

2
π∗(c1(ω)c1(F)) − π∗(c2(F)). (6)

Note that (6) reduces to the usual Mumford formula (2) in case that F is the trivial bundle of rank
one. Choosing for F the trivial bundle of rank r (which is not stable), we obtain AF,λ = r ·Aλ;
this choice corresponds to the incorrect impression [7] (suggested by a local analysis) that the
bcr -system is just a sum of r usual bc-systems. In the case that we do not assume F to be of
simpler type than the general E we may setλ = 0 in (6) and use (3) to recover (5). If we consider
families of spin curves [16], i.e., curves with a spin structure (essentially a square root of the
canonical bundle), we have to take a finite covering of the moduli space Mg and are allowed
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to consider λ ∈ 1
2 Z. Inserting λ = 1

2 in (6) yields AF, 1
2

= r · A 1
2

+ 1
2π∗(c2

1(F)) − π∗(c2(F)).

From (3) we inherit the following symmetry around 1
2 :

AF,1−λ = AF,λ + (1 − 2λ) · π∗(c1(ω)c1(F)).

Making this more explicit, we first obtain for κ ∈ 1
2 Z that

AF,λ+κ = AF,λ + κ · π∗(c1(ω)c1(F)) + 6rκ(κ + 2λ − 1) · A1

which reduces in the case λ = 1
2 to

AF, 1
2 +κ = AF, 1

2
+ κ · π∗(c1(ω)c1(F)) + 6rκ2 · A1.

This shows explicitly that the term in the middle of the right-hand side destroys the symmetry
κ ↔ −κ , since AF, 1

2 +κ − AF, 1
2 −κ = 2κ · π∗(c1(ω)c1(F)). Note that we do restore this

symmetry in the case that c1(F) = 0. Recall that the symmetry (3) comes from the fact that
the bc-system is symmetric under interchange of the field contents, i.e., there is no difference in
considering b (resp. c) as a section of Kλ (resp. K1−λ) or K1−λ (resp. Kλ). In the bcr -system
we have a symmetry under interchange of E and K ⊗E∨, see [7]. Since this symmetry should
also hold in the relative case, we expect that Aω⊗E∨ = AE . Let us check this explicitly for
E = F ⊗ ωλ, so ω ⊗ E∨ = F∨ ⊗ ω1−λ. Using the relation ci(F∨) = (−1)ici(F) [9], we find
with (3) and (6)

AF∨,1−λ = r · A1−λ +
1

2
π∗(c2

1(F∨)) +
2(1 − λ) − 1

2
π∗(c1(ω)c1(F∨)) − π∗(c2(F∨))

= AF,λ

as we expected. Using the above formulae it is easy to check that in the general case the
expected formula holds, i.e.,

Aω⊗E∨ = AE .

This is again a consequence of Serre duality and reduces to (3) if one chooses E = ωλ.
Since the characteristic class c2(E) appears in formula (5) for the anomaly, it is not possible

(in contrast to the usual rank-one case appearing in string theory—recall the introduction) to
consider the relative bcr -system together with a simple bosonic system (like the Xµ) and
arrange for a cancellation of anomalies. In particular, one is tempted to introduce an additional
system based on E∨ to get rid of this term (some kind of ‘ghosts of ghosts’), but the symmetry
c2(E∨) = c2(E) destroys these hopes. Consequently, it will be much more difficult to construct
a complete system free of anomalies, but see, e.g., [6].
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