

Home Search Collections Journals About Contact us My IOPscience

A note on families of *bc*-systems of higher rank

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2001 J. Phys. A: Math. Gen. 34 L53

(http://iopscience.iop.org/0305-4470/34/7/101)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.101 The article was downloaded on 02/06/2010 at 09:49

Please note that terms and conditions apply.

J. Phys. A: Math. Gen. 34 (2001) L53-L57

www.iop.org/Journals/ja PII: S0305-4470(01)20056-0

LETTER TO THE EDITOR

A note on families of *bc*-systems of higher rank

Matthias Schork

FB Mathematik, J W Goethe-Universität, 60054 Frankfurt, Germany

E-mail: schork@math.uni-frankfurt.de

Received 5 December 2000

Abstract

We consider a special family of *bc*-systems of higher rank and discuss some properties of its associated anomaly.

PACS numbers: 1125, 0240

1. Introduction

The *bc*-system first appeared in bosonic string theory as a gauge fixing ghost system and plays a central role [1], in particular in the path-integral approach to scattering amplitudes (see [2, 3] and the extensive list of references therein). In this approach the final expressions are finitedimensional integrals of Quillen norms of sections of certain determinant line bundles over the moduli spaces $\mathcal{M}_{g,n}$ (or the compactifications $\overline{\mathcal{M}}_{g,n}$) of *n*-punctured Riemann surfaces. As there are two contributions to the integrand (one from the string embedding X^{μ} , $\mu = 1, \ldots, d$ and the other from the ghosts b, c, \bar{b}, \bar{c}), one may use the famous Mumford formula [4] to trivialise the bundle for special choices of parameters, thus fixing the dimension of space–time to d = 26 [5]. Recently, a close cousin of the (chiral) *bc*-system based on vector bundles of higher rank was introduced and some of its properties were studied [6, 7]. Since families of the usual system play such a decisive role in string theory, one should thus consider families of these generalized *bc*-systems too. This is what we start here.

In the following we denote by Σ a Riemann surface of genus $g \ge 2$ and by *K* its canonical bundle, i.e., the holomorphic cotangent bundle. We use the same symbol to denote a holomorphic vector bundle and its associated (locally free) sheaf of germs of sections. We also switch freely between the algebraic and analytic category.

2. The relative bc-system and some geometry

Before we begin we briefly recall some geometrical background; for this see, e.g., [3, 8]. Assume $\pi : X \to S$ to be a continous map between varieties and let E be a sheaf on X (e.g., the locally free sheaf of sections of some vector bundle). Then the higher direct image sheaves $R^i \pi_*(E)$ on S are the sheaves associated to the presheaves $U \mapsto H^i(\pi^{-1}(U), E_{|\pi^{-1}(U)})$; loosely speaking, we interpret them as cohomology along the fibre, i.e., $R^i \pi_*(E)_s \simeq H^i(X_s, E_s)$, where $X_s := \pi^{-1}(s)$ and $E_s := E_{|\pi^{-1}(s)}$. The set of coherent sheaves on X

0305-4470/01/070053+05\$30.00 © 2001 IOP Publishing Ltd Printed in the UK

is a semigroup under direct sum and we turn it into a group by factoring out the relation $\mathcal{E} - \mathcal{E}_1 - \mathcal{E}_2$ for every exact sequence $0 \to \mathcal{E}_1 \to \mathcal{E} \to \mathcal{E}_2 \to 0$, thus obtaining a free abelian group, the Grothendieck group K(X). Its elements are denoted by $[\mathcal{E}]$ or as formal differences $\mathcal{F} - \mathcal{G}$. Now, let *E* be a coherent sheaf on *X* and let π be 'sufficiently nice' (e.g., proper and flat); then the direct images $R^i \pi_*(E)$ on *S* are coherent too and we can define a map $\pi_1 : K(X) \to K(S)$, given by

$$\pi_!([E]) := \sum_{i \ge 0} (-1)^i [R^i \pi_*(E)].$$
⁽¹⁾

We now restrict to the case of a family $\pi : C \to S$ of projective curves (Riemann surfaces), i.e., the fibers $\Sigma_s := C_s$ have dimension one; here we imagine that $S \subset \mathcal{M}_g$. In this case (1) reduces to $\pi_!(E) = R^0 \pi_*(E) - R^1 \pi_*(E)$ since the higher cohomologies vanish. Using that a determinant can be defined for coherent sheaves [9], we may use its multiplicative property to define for elements of K(S): det $(\mathcal{E} - \mathcal{F}) :=$ det $(\mathcal{E}) \otimes$ det $(\mathcal{F})^{-1}$. We thus obtain det $\pi_!(E) = det(R^0 \pi_*(E)) \otimes det(R^1 \pi_*(E))^{-1}$. Let us denote by $\omega := \omega_{C/S}$ the relative dualizing sheaf (which equals the sheaf of relative one-forms $\Omega^1_{C/S}$ in smooth points) and by $\omega^{\lambda} = \omega^{\otimes \lambda}$ its powers for $\lambda \in \mathbb{Z}$. Define $\mathcal{L}_{\lambda} := det \pi_!(\omega^{\lambda})$; its stalks are given by

$$(\mathcal{L}_{\lambda})_{s} \simeq \det H^{0}(\Sigma_{s}, \omega_{\Sigma_{s}}^{\lambda}) \otimes (\det H^{1}(\Sigma_{s}, \omega_{\Sigma_{s}}^{\lambda}))^{-1} \simeq \det(\ker \bar{\partial}_{\lambda;s}) \otimes (\det(\operatorname{coker} \bar{\partial}_{\lambda;s}))^{-1}$$

where $\bar{\partial}_{\lambda;s} : K_{\Sigma_s}^{\lambda} \to K_{\Sigma_s}^{\lambda} \otimes \overline{K}_{\Sigma_s}$ is the Dolbeault operator appearing in the action of the (chiral) *bc*-system of conformal weight $(1 - \lambda, \lambda)$ on Σ_s ; the case $\lambda = -1$ is the one appearing in bosonic string theory [1]. Defining naively for each *s* the virtual vector space ker $\bar{\partial}_{\lambda;s} - \operatorname{coker} \bar{\partial}_{\lambda;s} =: \operatorname{ind} \bar{\partial}_{\lambda;s}$, we see that $(\mathcal{L}_{\lambda})_s \simeq \det \operatorname{ind} \bar{\partial}_{\lambda;s}$, thus showing the connection to the anomaly of the family $\{\bar{\partial}_{\lambda;s}\}_{s\in S}$ [10,11]. Defining the (local) anomaly by $\mathcal{A}_{\lambda} := c_1(\mathcal{L}_{\lambda})$, we may use Grothendieck–Riemann–Roch $\operatorname{Ch}(\pi_1(E)) = \pi_*(\operatorname{Ch}(E)\operatorname{Td} T_{\mathcal{C}/S})$ (where π_* is 'integration along the fibre' and $T_{\mathcal{C}/S} = \omega_{\mathcal{C}/S}^{-1}$ is the relative tangent sheaf) to prove the Mumford formula $\mathcal{L}_{\lambda} \simeq \mathcal{L}_1^{6\lambda^2 - 6\lambda + 1}$ [4], which we interpret as an anomaly relation:

$$\mathcal{A}_{\lambda} = (6\lambda^2 - 6\lambda + 1) \cdot \mathcal{A}_1. \tag{2}$$

The anomaly coming from the chiral and antichiral ghost system in the bosonic string is given by $-2A_{-1} = -26A_1$, thus forcing d = 26 [5]. Note the symmetry of (2) around $\frac{1}{2}$ coming from Serre duality:

$$\mathcal{A}_{1-\lambda} = \mathcal{A}_{\lambda}.\tag{3}$$

3. The relative bc-system of higher rank

A generalized *bc*-system based on a Hermitian vector bundle *E* of rank *r* over a Riemann surface was introduced in [7] (see also [6]). Using the Hodge inner product, the action of this *bc_r*-system is given by $S[b, c] = \frac{i}{\pi} \int_{\Sigma} b \wedge \bar{\partial}_E c$, where *c* (resp. *b*) is a section of *E* (resp. $K \otimes E^{\vee}$). Following the approach of Raina [12, 13] for the usual rank-one case, it was shown that the simplest possible case results if we choose *E* to be stable of degree d = r(g - 1)with $h^0(\Sigma, E) = 0$, i.e., *E* lies outside the nonabelian theta divisor (this corresponds roughly to choosing an even theta-characteristic α with $\alpha^2 \simeq K$ in the rank-one case). In the case where zero-modes are allowed, one uses appropriate insertions to relate these systems to the one considered before where no zero-modes exist. It turns out that—realizing this idea—a satisfactory treatment (existence and uniqueness of correlation functions) exists for rank *r* only in degree d = rs with $s = 1, \ldots, g - 2$; here we have assumed without loss of generality $0 \leq d < r(g - 1)$. Nevertheless, let us consider as above a family of Riemann surfaces (projective curves) $\pi : C \to S$ endowed with a family $\mathcal{E} \to C$ of (stable) vector bundles of rank *r* and degree *d* (that is, each restriction $\mathcal{E}_s := \mathcal{E}_{|\Sigma_s|}$ is of this type). The zero-modes of the field *c* (resp. *b*) on Σ_s are given by $H^0(\Sigma_s, \mathcal{E}_s)$ (resp. $H^0(\Sigma_s, K_{\Sigma_s} \otimes \mathcal{E}_s^{\vee}) \simeq H^1(\Sigma_s, \mathcal{E}_s)^*$) and we obtain in complete analogy to above

det(ind
$$\bar{\partial}_{\mathcal{E}_s}) \simeq \det H^0(\Sigma_s, \mathcal{E}_s) \otimes (\det H^1(\Sigma_s, \mathcal{E}_s))^{-1} = (\det \pi_1(\mathcal{E}))_s$$

so that we want to consider det $\pi_1(\mathcal{E}) \ (\equiv \lambda_{\mathcal{E}}$ in the notation of [14] and (DET $\bar{\partial}_{\mathcal{E}})^{-1}$ in [15]) on *S*. The anomaly is in this case defined as $\mathcal{A}_{\mathcal{E}} := c_1(\det \pi_1(\mathcal{E}))$ and we want to determine it with the help of Grothendieck–Riemann–Roch. Therefore, we have to calculate the degree-four part of Ch(\mathcal{E})Td($T_{\mathcal{C}/S}$), which is in general given by

$$\frac{r}{12}c_1^2(\omega) - \frac{1}{2}c_1(\mathcal{E})c_1(\omega) + \frac{1}{2}c_1^2(\mathcal{E}) - c_2(\mathcal{E}).$$
(4)

Now, applying π_* and using the definition of the Hodge class $\mathcal{A}_1 = \frac{1}{12}\pi_*(c_1^2(\omega))$ we obtain:

Proposition 1. Let $\pi : C \to S$ be a family of projective curves (Riemann surfaces) and $\omega_{C/S} = \omega$ the relative dualizing sheaf. If $\mathcal{E} \to C$ is a family of (stable) vector bundles of rank r then the anomaly of the family of associated bc_r -systems is given by

$$\mathcal{A}_{\mathcal{E}} = r \cdot \mathcal{A}_1 - \frac{1}{2} \pi_*(c_1(\omega)c_1(\mathcal{E})) + \frac{1}{2} \pi_*(c_1^2(\mathcal{E})) - \pi_*(c_2(\mathcal{E})).$$
(5)

Since this seems to be all one can say in the general case, we now specialize to a situation where we have more contact to the usual *bc*-system. We thus assume that $\mathcal{E} = \mathcal{F} \otimes \omega^{\lambda}$ with $\lambda \in \mathbb{Z}$, i.e., we have a family of ' \mathcal{F} -valued fields of spin λ '. Here we assume that \mathcal{F} is of a somehow simpler type than the general \mathcal{E} . Note that $\operatorname{rank}(\mathcal{E}) = \operatorname{rank}(\mathcal{F}) = r$ and $\operatorname{deg}(\mathcal{E}) = \operatorname{deg}(\mathcal{F}) + 2\lambda r(g-1)$. The anomaly is given as

$$\mathcal{A}_{\mathcal{F},\lambda} := \mathcal{A}_{\mathcal{F} \otimes \omega^{\lambda}} = c_1(\det \pi_!(\mathcal{F} \otimes \omega^{\lambda})).$$

Since the expansion of the Chern class gives $c_1(\mathcal{F} \otimes \omega^{\lambda}) = r\lambda c_1(\omega) + c_1(\mathcal{F})$, we obtain from (4) the degree-four part

$$\frac{r}{12}(6r\lambda^2 - 6\lambda + 1)c_1^2(\omega) + \frac{1}{2}c_1^2(\mathcal{F}) + (r\lambda - \frac{1}{2})c_1(\omega)c_1(\mathcal{F}) - c_2(\mathcal{F} \otimes \omega^{\lambda}).$$

Using

$$c_2(\mathcal{F} \otimes \omega^{\lambda}) = \frac{r(r-1)\lambda^2}{2}c_1^2(\omega) + \lambda(r-1)c_1(\omega)c_1(\mathcal{F}) + c_2(\mathcal{F})$$

this equals

$$\frac{r}{12}(6\lambda^2 - 6\lambda + 1)c_1^2(\omega) + \frac{1}{2}c_1^2(\mathcal{F}) + \frac{2\lambda - 1}{2}c_1(\omega)c_1(\mathcal{F}) - c_2(\mathcal{F}).$$

Again, applying π_* and using the definition of the Hodge class we obtain:

Proposition 2. Assume that $\mathcal{E} = \mathcal{F} \otimes \omega^{\lambda}$. The associated anomaly is given by

$$\mathcal{A}_{\mathcal{F},\lambda} = r \cdot \mathcal{A}_{\lambda} + \frac{1}{2} \pi_*(c_1^2(\mathcal{F})) + \frac{2\lambda - 1}{2} \pi_*(c_1(\omega)c_1(\mathcal{F})) - \pi_*(c_2(\mathcal{F})).$$
(6)

Note that (6) reduces to the usual Mumford formula (2) in case that \mathcal{F} is the trivial bundle of rank one. Choosing for \mathcal{F} the trivial bundle of rank r (which is not stable), we obtain $\mathcal{A}_{\mathcal{F},\lambda} = r \cdot \mathcal{A}_{\lambda}$; this choice corresponds to the incorrect impression [7] (suggested by a local analysis) that the bc_r -system is just a sum of r usual bc-systems. In the case that we do not assume \mathcal{F} to be of simpler type than the general \mathcal{E} we may set $\lambda = 0$ in (6) and use (3) to recover (5). If we consider families of spin curves [16], i.e., curves with a spin structure (essentially a square root of the canonical bundle), we have to take a finite covering of the moduli space \mathcal{M}_g and are allowed to consider $\lambda \in \frac{1}{2}\mathbb{Z}$. Inserting $\lambda = \frac{1}{2}$ in (6) yields $\mathcal{A}_{\mathcal{F},\frac{1}{2}} = r \cdot \mathcal{A}_{\frac{1}{2}} + \frac{1}{2}\pi_*(c_1^2(\mathcal{F})) - \pi_*(c_2(\mathcal{F}))$. From (3) we inherit the following symmetry around $\frac{1}{2}$:

$$\mathcal{A}_{\mathcal{F},1-\lambda} = \mathcal{A}_{\mathcal{F},\lambda} + (1-2\lambda) \cdot \pi_*(c_1(\omega)c_1(\mathcal{F})).$$

Making this more explicit, we first obtain for $\kappa \in \frac{1}{2}\mathbb{Z}$ that

$$\mathcal{A}_{\mathcal{F},\lambda+\kappa} = \mathcal{A}_{\mathcal{F},\lambda} + \kappa \cdot \pi_*(c_1(\omega)c_1(\mathcal{F})) + 6r\kappa(\kappa+2\lambda-1)\cdot\mathcal{A}_{\mathcal{F},\lambda+\kappa}$$

which reduces in the case $\lambda = \frac{1}{2}$ to

$$\mathcal{A}_{\mathcal{F},\frac{1}{2}+\kappa} = \mathcal{A}_{\mathcal{F},\frac{1}{2}} + \kappa \cdot \pi_*(c_1(\omega)c_1(\mathcal{F})) + 6r\kappa^2 \cdot \mathcal{A}_1$$

This shows explicitly that the term in the middle of the right-hand side destroys the symmetry $\kappa \leftrightarrow -\kappa$, since $\mathcal{A}_{\mathcal{F},\frac{1}{2}+\kappa} - \mathcal{A}_{\mathcal{F},\frac{1}{2}-\kappa} = 2\kappa \cdot \pi_*(c_1(\omega)c_1(\mathcal{F}))$. Note that we do restore this symmetry in the case that $c_1(\mathcal{F}) = 0$. Recall that the symmetry (3) comes from the fact that the *bc*-system is symmetric under interchange of the field contents, i.e., there is no difference in considering *b* (resp. *c*) as a section of K^{λ} (resp. $K^{1-\lambda}$) or $K^{1-\lambda}$ (resp. K^{λ}). In the *bc*_r-system we have a symmetry under interchange of *E* and $K \otimes E^{\vee}$, see [7]. Since this symmetry should also hold in the relative case, we expect that $\mathcal{A}_{\omega \otimes \mathcal{E}^{\vee}} = \mathcal{A}_{\mathcal{E}}$. Let us check this explicitly for $\mathcal{E} = \mathcal{F} \otimes \omega^{\lambda}$, so $\omega \otimes \mathcal{E}^{\vee} = \mathcal{F}^{\vee} \otimes \omega^{1-\lambda}$. Using the relation $c_i(\mathcal{F}^{\vee}) = (-1)^i c_i(\mathcal{F})$ [9], we find with (3) and (6)

$$\mathcal{A}_{\mathcal{F}^{\vee},1-\lambda} = r \cdot \mathcal{A}_{1-\lambda} + \frac{1}{2}\pi_*(c_1^2(\mathcal{F}^{\vee})) + \frac{2(1-\lambda)-1}{2}\pi_*(c_1(\omega)c_1(\mathcal{F}^{\vee})) - \pi_*(c_2(\mathcal{F}^{\vee}))$$
$$= \mathcal{A}_{\mathcal{F},\lambda}$$

as we expected. Using the above formulae it is easy to check that in the general case the expected formula holds, i.e.,

 $\mathcal{A}_{\omega\otimes\mathcal{E}^{\vee}}=\mathcal{A}_{\mathcal{E}}.$

This is again a consequence of Serre duality and reduces to (3) if one chooses $\mathcal{E} = \omega^{\lambda}$.

Since the characteristic class $c_2(\mathcal{E})$ appears in formula (5) for the anomaly, it is not possible (in contrast to the usual rank-one case appearing in string theory—recall the introduction) to consider the relative bc_r -system together with a simple bosonic system (like the X^{μ}) and arrange for a cancellation of anomalies. In particular, one is tempted to introduce an additional system based on \mathcal{E}^{\vee} to get rid of this term (some kind of 'ghosts of ghosts'), but the symmetry $c_2(\mathcal{E}^{\vee}) = c_2(\mathcal{E})$ destroys these hopes. Consequently, it will be much more difficult to construct a complete system free of anomalies, but see, e.g., [6].

References

- [1] Green M, Schwarz J and Witten E 1987 Superstring Theory I, II (Cambridge: Cambridge University Press)
- [2] D'Hoker E and Phong D H 1988 The geometry of string perturbation theory Rev. Mod. Phys. 60 917–1065
- [3] Albeverio S, Jost J, Pachya S and Scarlatti S 1997 A Mathematical Introduction to String Theory (Cambridge: Cambridge University Press)
- [4] Mumford D 1977 Stability of projective varieties L'Enseignement Mathématique 23 39-110
- [5] Manin Yu I 1986 Critical dimension of the string theories and the dualizing sheaf on the moduli space of (super) curves Funct. Anal. Appl. 20 244–6
- [6] Losev A, Moore G, Nekrasov N and Shatashvili S 1997 Chiral Lagrangians, anomalies, supersymmetry, and holomorphy *Nucl. Phys.* B 484196–222
- [7] Schork M 2000 Generalized bc-systems based on Hermitian vector bundles J. Math. Phys. 41 2443-59
- [8] Hartshorne R 1977 Algebraic Geometry (Berlin: Springer)
- [9] Kobayashi S 1987 Differential Geometry of Complex Vector Bundles (Princeton, NJ: Princeton University Press)
- [10] Nash C 1991 Differential Topology and Quantum Field Theory (New York: Academic Press)
- [11] Bertlmann R A 1996 Anomalies in Quantum Field Theory (Oxford: Oxford University Press)

- [12] Raina A 1989 Fay's trisecant identity and conformal field theory Commun. Math. Phys. 122 625-41
- [13] Raina A 1990 Analyticity and chiral fermions on a Riemann surface Helv. Phys. Acta 63 694-704
- Beilinson A A and Schechtman V 1988 Determinant bundles and Virasoro algebras Commun. Math. Phys. 118 651–701
- [15] Alvarez-Gaumé L, Bost J B, Moore G, Nelson Ph and Vafa C 1987 Bosonization on higher genus Riemann surfaces Commun. Math. Phys. 112 503–52
- [16] Cornalba M 1989 Moduli of curves and theta-characteristics Lectures on Riemann Surfaces (Singapore: World Scientific)